
11 MSS技報・Vol.25
＊Faculty of Informatics,Osaka Gakuin University, Japan　＊＊Quality Assurance Department, Kansai Division, Mitsubishi Space Software Co., Ltd., Japan

Ⅰ. INTRODUCTION

　Embedded systems have become important in our
soc iety .Sof tware has come to contro l a lmost
everything from safety critical systems to home
appliances. Consequently, verifying the properties of
embedded systems has become increas ing ly
important. Formal methods are mathematical based
techniques for verification and development. Formal
methods are widely used in order to ensure properties.
Several successful applications have been reported,
these include verification of protocol specifications[1],
internal groupware systems[2], and avionics runway
safety monitoring[3]. The appearance of such formal
and semi-formal methods has led to the introduction of
international standards such as ISO/IEC 61508 and
RTCA（Radio Technical Commission for Aeronautics）
DO-178C. Therefore, it is crucial to accommodate these

standards by introducing formal methods to the
product development process.
　Model checking[4] is one formal method which has
been successfully applied in the verification of many
systems. A model of the system is verified by
exhaustively searching its state space to ensure that
properties are satisfied. In this approach models may
be represented by a transition system, such as a
Kripke structure, and properties are described by
using a logic such as Linear Temporal Logic（LTL） or
Computation Tree Logic（CTL）[5].
　This study reports on the application of formal
methods in the development of an embedded control
system by Mitsubishi Space Software Co., Ltd.（MSS）.
Note that the application of model checking in the
product development process is still in its early stages.
This study, therefore, includes investigation into the
applicability of formal methods, model checking in

　Ensuring the reliability of embedded systems has become very important. Reliability may be
ensured by a number of formal methods. We study one such verification technique by applying it to
an in-house development product in Mitsubishi Space Software Co., Ltd. This is a practical
industrial case study, we describe our approaches and present verification results. Our aim is to
check the correctness of specifications which include a set of constraints on parameters
individually called an evaluation item. To that end, we adopt model checking and satisfiability
checking. In our study, we set conversion rules from specifications to formal models. Part of the
conversion is done by hand in this study. Manual generation limits the preparation of individual
evaluation items. To overcome this limitation we present an approach for automatically generating
combinations of parameters for verification by applying the pairwise testing method. Finally, we
present experimental results. Note that the application of formal techniques, in this setting, is still
in its preliminary stages. It is intended to develop formal techniques to the point where products
may be automatically verified.
　Keywords-embedded system, verification, model checking, generation of verification items, case
study
※This report which the authers contributed to APSEC2013 is placed in this magazine under the
license of the IEEE.

A Case Study: Verification of Specifications of an
Embedded System and Generation of Verification
Items using Pairwise Testing

Toshifusa Sekizawa＊　Tsugu Kotorii＊＊　

2 MSS技報・Vol.25

Ⅱ. SYSTEM AND SPECIFICATIONS

　The Behavior of the target systems in this study are
defined by the following specifications.
1）Functional specifications of a control system
2）Combination table of signals of state flow
　The Functional specifications describe the core
parts of inhouse embedded products at MSS’s development
site. Various projects use this specification either as a
foundation, or to add feature expansions. Ensuring the
properties of this core specification is crucial. Note
that, this specification has been reviewed, but
additional reliability checking has been requested.
　Functional specifications define signals（variables）,
processes and transition conditions for every system
state. There are fifteen boolean signals 1, 2, . . . , 15
which include both normal signals and error signals.
Each signal represents a sensor state in the target
system. The target system also has seven system
states, 1, . . . , 7, depending on values of the signals.
Each system state represents a mode, such as initial
condition diagnostics. As might be expected, transition
condit ions are a lso def ined in the funct ional
specification.　Table I shows a part of these transition
conditions. There are 16 transition conditions for
system states. The table lists the current state, the
condition number, the transition conditions, and
transition destination for each entry. For example, the
first row states that if the current state is 1 and if transition
condition #S1-1 holds, i.e.,（ 1=ON） ∧（ 5=OFF） holds,
then the system makes a transition to state 2.
　The functional specification also describes the whole
system which consists of the following four processes,

1, . . . , 4.
1） 1 represents the main controller,
2） 2 simulates human manipulations,

particular, to the development process. To do this we
chose an in-house developed embedded system which
had its main functions defined by two specification
methods, a functional specification and a combination
table of signals. The following three approaches were
applied.
1）Reachability checking using model checking,
2）Satisfiability checking using an SMT（Satisfiability

Modulo Theories） solver, and
3）Generation of combinations of variables for

verification using pairwise testing methods.
In approach 1, a state transition system is constructed
from functional specifications and formulas for
reachability are extracted from the combination table.
These are then verified using model checking.
Approach 2 is a kind of bounded model checking
where satisfiability checking is only applied to
properties associated with no transitions. Approach 3
differs from the above in that it verifies properties
generated from a manually produced combination
table. Because of the limited number of combinations
that can be produced manually we adopt pairwise
testing to generate combination of variables.
　Through experiments , we have found some
shortcomings in the descriptions of specifications
which have passed the rev iew process . The
contributions of this study are; i） to show the
translation of product specifications into formal
models, ii） to show the verification results of an
industry case study, and iii） to describe the generation
of sets of verification parameters by applying pairwise
testing. Note that the names of systems and variables
have been generalized so as to protect trade secrets.
　The layout of this paper is as follows. In Section Ⅱ,
we describe the system and specifications. Then we
present our approach for applying model checking to
investigate correctness of the target system and
specif ications in SectionⅢ. SectionⅣ presents
verif ication results , and SectionⅤ offers some
discussion of these results. SectionⅥ provides a
concluding summary and outlines our future work.

TABLE Ⅰ　TRANSITION CONDITIONS OF THE SYSTEM

3 MSS技報・Vol.25

or not the conditions for state transitions hold. If a
transition condition is satisfied for the current state
then 1 makes a transition to another system state.
　Before describing specification 2, let an evaluation item

（EI）be a combination of the values of fifteen signals
1, . . . , 15, and let an evaluation table（ET） be a list of

EIs. Specification 2 provides an ET which contains 35
EIs. These EIs are extracted from review results by
hand . These may be descr ibed as necessary
combinations of signals for ensuring the reliability of

1. Note that the ET is used to generate test cases for
the testing phase of this product.
　Table II shows part of an ET which contains 35 EIs.
The three header rows show the process number,
signal names, and a signal classification, i.e. , normal
signal（N） or error signal（E）. Each of the data rows
corresponds to an EI which lists the item number,
constraints on signals, the current state, and the
expected transition. Signal constraint cells may either
have a value or be blank. If the cell has a constraint
value then the signal must take that value. If the cell
is blank then the signal may, non deterministically,
take any value in its range. The“state”column
identifies the current system state as defined in
specification 1. Lastly, the transition column lists the
expected property which will either be a transition
from state i to state j, listed as “ i→ j”, or no
transition, listed as“Status Quo”, which means that
the controller stays in its current state.For example,
entry No.1 indicates that for 2 normal signal 1=ON

3） 3 is an external environment, and
4） 4 is an external environment different from 3.
These four processes run in parallel and all except 2
are continuous. Process 1 is the main controller
which handles the system state according to the
behaviors defined by transition conditions in Table I.
This main control process is the verification target.
Process 2 simulates human manipulations and handles
only one global signal 1 which represents the main
system switch. Note that the main switch does not
interrupt the power supply and all processes will
continue to run if the main switch is turned off.
Process 3 represents an external environment. It
detects and aggregates changes in sensor values then
makes them available to 1. Process 4 is also an
external environment and is similar to 3.
　Here, we describe data flow between processes.
Process 2 controls a global switch 1 which affects
the condition of the system. For example, signal 2
never becomes ON if 1 is OFF, but 2 becomes ON if

1 = ON and some other conditions hold. However,
hardware sensors may be activated by conditions
outside of the specification, even if 1 is OFF. This is
because we are handling the core part of the
embedded system, and the sensors are affected by
external conditions. Processes 3 and 4 detect
changes in the sensors, and asynchronously send the
sensor values to 1. The main controller 1 periodically
polls and collects these sensor values. According to the
combination of the sensor values, 1 judges whether

TABLE Ⅱ　EVALUATION TABLE

4 MSS技報・Vol.25

model. For example, condition No.#S1-1 is converted into
Promela model as shown in Fig. 2. Note that, 1 is the
verification target and is shared in all verifications.
Therefore, this conversion is used only once.
　Next, we describe the conversion rules from an EI
to Promela. Conversions are done automatically
according to conversion rules. Process 2 only handles
one global variable. This process can be modeled in a
straightforward manner as shown in Fig. 3.
　Processes 3 and 4 have essentially the same
behaviors. The reason for division into two processes
is based on the design of the target system, and is
outside the scope of this study. Both processes are
non-stop processes which continuously send signals to

1. Therefore, the whole process is expressed as an
infinite loop. One execution of the do loop corresponds
to the sending of a set of signals. Values of signals
depend on the values of the elements in the EI. If a
value of signal is defined with a constraint, then the
signal is expressed deterministically. Otherwise, if no
constraints are defined then the value of signal is
handled by non-deterministic choice. The Promela
code shown in Fig. 4 expresses the conversion rules.
Note that if there are no deterministic signals then
conversion for the signals are skipped.
　In addition, we need at least one property for
verification. A property is extracted from the cells in
the EI which describe the target state and expected
property. If an expected property is written as “ i→ j”
in a cell of the ET, it means “from the state i,
eventually reaches to j”. This reachability property
is translated into an LTL formula □（state== i→◇

（state== j））, where state is a variable in Promela
representing a system state.
　2）Satisfiability Checking: If the transition cell for an EI

and for 4 error signal 5=OFF. All other signals have
non-deterministic settings, either ON or OFF. Then if
the current system state is 1, the target process 1
is expected to make a transition into state 2.

Ⅲ. OUR APPROACH

　Our approach consists of two parts; verifying
properties defined by an ET, and generating EIs using
a pairwise testing method, Fig. 1 illustrates this
approach and it is described in detail below.
A. Verification　of　Properties
　Verification is carried out by using the SPIN[6] model
checker and satisfiability checking uses the Yices[7]
SMT solver. These procedures are detailed here.
1）　Model Checking: To verify reachability properties,
which are expressed as “ i→ j” in an EI, we use the
SPIN model checker. SPIN takes a model written in a
specification language, Promela, and properties
described in LTL. There are a number of EIs in the
ET but because some of them conflict with others we
verify the EIs one by one.
　The Promela input model for SPIN consists of
variable declarations, four processes, and some inline
functions. The model is constructed from the
specification in a straightforward manner. In this
study, we draw up conversion rules from specifications
to Promela for future automated verification. Our
conversion rules mainly consists of two parts, a
conversion rule for generating 1 from transition
conditions, and conversion rules for generating other
processes from an EI.
　First , we describe the conversion rule from
specification 1. As shown in Table I, transition
conditions for the system are expressed in predicate
logic where signals are atomic propositions. Therefore,
it is easy to convert from the formula to a Promela

Fig. 1　Our Approaches

Fig. 2　Example of Conversion of Transition Conditions

Fig. 3　Conversion Rule for Process 2

5 MSS技報・Vol.25

method of generating test cases from a pair of
parameters. EIs are thus generated using pairwise
testing a properties are verified by model checking
the generated EIs. Because pairwise testing only
generates pairs of parameters it is then necessary to
associate a property with each EI. We use CIT-BACH

（combinatorial interaction testing tool with a BDD-
assisted constraint handler）[9] as a pairwise test case
generator. One feature of CIT-BACH is that it allows
constraints to be applied to parameters. If one gives
constraints on input parameters then generated pairs
of parameters will satisfy these constraints.
　Now we consider the construction of a model using
the results from CIT-BACH. We can construct an
input model for SPIN based on specification 1 and
pairs of signals considered as constraints in an EI.
However, CIT-BACH only generates pairs of signals
and there is no property. To solve this problem, we
focus on the two classifications of system states,
normal states and error states. That is, system states

5, 6 and 7 are assigned to error states. According
to the specification, if at least one error signal is ON
the system must transit to one of its error states. This
may be an indirect transition, for example, 1 cannot
directly reach one of the error states and must
indirect via some other state. This specification can be
applied to set a property. Specifically, We set at least
one error signal to ON in the pairwise testing input
parameters, and set the property for reachability
checking to state 5, 6, or 7.
　In this study, the approach described above is
carried out by hand. However, this approach can be
automated. It allows us to carry out verifications while
computation environments have idle time. We believe
that such additional verification will contribute to
improve reliability.

Ⅳ. VERIFICATION RESULTS

　In this section, we present results of verifications
and satisfiabil ity checking. We implemented a
prototype tool for generating input files from ET
based on the conversion rules described in Sec. III.
Note that the prototype tool only generates input files
for SPIN leaving the input files for Yices to be
constructed by hand. However, input files for Yices
are not complicated, and there is no difficulty.

has “Status Quo” as its expected value then there is
no state transition. In this section, we describe our
approach to EI including “Status Quo”. For this
expected property , i t i s poss ib le to wr i te a
corresponding LTL formula, but verification using
SPIN is hard because of the state explosion problem
caused by the number of signals. As described above,
transition conditions in 1 can be expressed as a
formula in predicate logic. Constraints on signals in an
EI can also be expressed as a formula. Therefore, it is
possible to check whether or not the transition
condition is met by satisfiability checking.
　Specifically, we first obtain the transition condition
associated with systems state i and the constraints
χ defined by the appropriate EI. Then we check the
sat i s f i ab i l i ty o f wi th constra intsχ. I f i s
unsatisfiable, there will be no combination of signals
which makes a transition from state i . Otherwise, if
the result is satisfiable, there will be at least one
combination of signals, and the expected property
does not ho ld . In th is case , Yices shows the
combination of signals which satisfies the checked
formula and this provides a counter example.
　This approach is a kind of bounded model checking[8]
in which the boundary is limited to the current state.
Note that an SAT solver is sufficient for checking the
properties handled in this study, because all signals
are two-valued. However, enhanced versions of
specifications will include real values and functions on
a range of signals. Therefore, we adopt an SMT solver
for future extensions.
B. Generation of Evaluation Items
　Manual generation of EIs limits the number of
properties that can be checked. Therefore, it is
necessary to have automatic generation of EIs. We
adopt pairwise testing which is a combinatorial

Fig. 4　Conversion Rules for Evaluation Item

6 MSS技報・Vol.25

investigated. The expected result was unsatisfiable,
but the solver indicated that it was satisfiable. Yices
returns a combination of variables for satisfiable
transition conditions and this was analyzed to identify
the problem. This led to the identi f icat ion of
inconsistencies in variables and the conclusion that
conditions for EI No.31 were not sufficient. As with the
cases of EIs of No.21 and No.22, the results were
checked by engineers. It transpired that, EI No.31 was
intentionally inserted into the ET by engineers in
order to investigate power of formal methods. According
to the engineers, EI No.31 simulates a situation in
which a variable is misread and a constraint is
incorrectly described. EI No.31 does not exist in the
real specification and the authors had not be notified
of the addition of this test item. Even though EI No.31
is an experimental item, we believe that detection of
its inconsistency shows the applicability of satisfiability
checking.
　Finally, we describe our trial verification results for
generating EIs using CIT-BACH. To confirm validity,
we generated a set of EIs using CIT-BACH according
to the approach described in Section III. In applying
the approach, it is required to determine which error
signal is set. Here, we set error signal 5 to be true as
a constraint. Normal signal 1 is also set to be true,
because if this signal is false then many other signals
are affected. We constructed an input file for CIT-
BACH which described these constraints. CIT-BACH
then generated nine EIs for two constraints and
thirteen signals not specified. In addition, it is required
to determine the target system state and at least one
property for verification. Here, the target state is set
to 3, and a property is expressed as reachability to
one of the system error states. The reachability
property is □（targetstate→ ◇errorstates）, where
targetstate is state= 3 and errorstates is state= 5 ∨
state= 6 ∨state= 7. The reason that errorstates consists
of three system states is because an error state cannot
be absolutely specified for the constraints. The
generated EIs were then converted into Promela
models using our prototype conversion tool, and
verified using SPIN. The results were as expected and
no inconsistencies were found. Note that, all signal
values were fixed in the setting described above. It is,
of course, possible to set some of of the signals to be

　All 35 EIs listed in specification 2 are verified, 25 EIs
are verified using SPIN and 10 EIs are checked using
Yices. Results indicated that three EIs, No.21, No.22,
and No.31, are not sufficient to satisfy transition
conditions. Two of these, No.21 and No.22, were
identified by model checking, and the third by
satisfiability checking. The verification results were
unexpected, because specifications are reviewed and
all properties are expected to hold.
　In response to the ver i f icat ion results , we
investigated the reasons for the failures. First, we
checked the conversion rules. Particular attention was
given to the examination of 1 and its associated
conversion rules. This is because 1 is generated only
once and shared by all verifications, i.e., if 1 has error,
verification results make no sense. As a result of
examination, we conclude that the 1 accurately
reflected its specification. Hereafter, assume that 1 is
correct.
　Next we investigated transition conditions for EIs
No.21 and 22. For No.21, the expected property is
reachability, □（（state= 4）→◇（state= 6））. On
analyzing the counter example it was found that a
necessary constraint was missing. The authors handle
verification from the viewpoint of quality assurance
without the perspective of engineers working on
system development. Engineers in charge of the
product were asked to review these verification
results. It was confirmed that there were missing
constraints. In more concrete terms, signal 13 is
defined as a non-deterministic variable in EI No.21, but
σ13 must be fixed to false. After the problem was
solved, we set the signal to be false, and verified the
property again. This verification confirmed that the
property satisfactory holds. The problem with No.22
was similar to that of No.21, i.e., a missing constraint.
This was also confirmed after appropriate constraints
were set. Note that the prototype conversion tool is
used again for these re-verifications. In addition, we
examine the effects of these problems because EIs are
used as a foundation for constructing test cases for
this product. These missing constraints are handled as
implicit knowledge in the test phase, and errors are
avoided. Obviously, such occurrences decrease
reliability in software development.
　The prob l em found in EI No .31 was then

7 MSS技報・Vol.25

rules are applied to generate formal models. We
believe that this approach enables automation. Counter
examples are, however, analyzed by hand and this is
not an ideal situation for the application of formal
methods. This is because counter examples do not
necessarily present the shortest path and the manual
analysis of counter examples is requires skill and is
costly. Therefore, computer aided counter example
analysis will be required. Another problem is the state
explosion problem. This is widely considered as a
major problem in model checking. We constructed models
from specifications in a straightforward manner. This
approach improves the readability of models, but
causes state explosion problems. The size of state
space for this study was within SPIN’s capabilities
but it was close to the state space size limit. If we
apply our approach to the enhanced versions of the
product specification then the state space explosion
will potentially cause problems. Abstraction seems to
be a promising technique for reducing the size of the
state space. Data mapping and predicate abstraction
seem to be especially, efficient in this regard.
　Now we consider function enhancement. Specifications
were converted into Promela models for conventional
model checking. This approach was sufficient for the
specifications handled in this study, because all signals
are two-valued. However, these specifications are a
core part of our product and in the enhanced version
signals are not limited to twovalue ranges. Additionally,
various types of properties are expected to be verified.
For example, one important behavior aspect of
embedded system is time-related properties. Several
models have been proposed to deal with such real-time
systems. One such model is the timed automaton[10]
which is being considered as a candidate if we extend
our approach to verify time-related properties.
Another possibility is the verification of hybrid
systems[11] in which continuous and discrete dynamics
are mixed with time progression. Embedded systems
sometimes control continuous systems. Therefore,
hybrid systems also seem to promise models which
reflect this target architecture more closely.
B. Related Work
　Here we br ie f ly descr ibe re la ted work on
conversion, verification of applications in control
engineering. When one considers applying formal

non-deterministic values.
　Verifications were performed using SPIN 6.2.2, Yices
1.0.38, and CIT-BACH 1.01 on Windows 7 64bit,
running on an Intel Core i5-2400 3.10GHz, with 8GB
memory. According to the verification log of SPIN, the
number of system states stored is approximately 3×
107 and the time for a verification when properties
hold is about 450 seconds. It is easy to understand
how Yices returns the result in about one second,
because unused variables are omitted.

Ⅴ. DISCUSSION

　Here, we discuss our experiments and consider
related work in the field of control engineering and
embedded systems.
A. Discussions on the Experiments
　In this sect ion , we discuss our veri f icat ion
experiments and consider effectiveness of our
approaches to development processes.
　First, we consider the missing but necessary signal
values in EIs. As mentioned, the evaluation table had
been reviewed entirely save for the intentionally
inserted experimental EI. Even if these omissions are
avoided by implicit knowledge, their detection during
the design phase is valuable for product development
because EIs are the basis for test cases. The detection
of an intentionally inserted EI also shows possibility of
formal methods.
　We have not found any inconsistencies in the
verification of EIs generated using CIT-BACH. Even
so, these generated EIs specify new combinations of
signals allowing us to verify additional items that were
not extracted from the review process. These results
indicate both the applicability and the effectiveness of
our approach. Recall that one of the purposes of this
study was an investigation of the applicability of
formal methods. It is widely said that formal methods
have the power to reduce problems in the earlier
stage of development. Our results confirm that formal
methods are useful and that this saying expresses a
valid point of view.
　Though the verification results are positive we
believe that there are still some problems to overcome
and one of these is automation. Automation is an
important consideration for applying formal methods
to product development. In this study, conversion

8 MSS技報・Vol.25

a prototype conversion tool to construct input files for
verification and satisfiability checking. The tool only
converts a part of the input files, leaving some details
to be processed manually. All conversions were,
however, done by rote. This indicates that conversion
from the evaluation table can be fully automated.
These results lead us to believe that pragmatic
expansion to the development site and into products
will produce the desired effects. Another future task is
introducing formal specification language such as B, Z,
and VDM. In this study, we had to convert the main
controller by hand because the specification was
wri t ten in natura l language . Obvious ly , th is
specification method leads to difficulties in automatic
verification using formal methods.

ACKNOWLEDGMENT

　The authors would express our sincere gratitude to
Professor Tatsuhiro Tsuchiya, Osaka University, for
his advise about pairwise testing and tool CIT-BACH.
　The authors would like to thank Associate Professor
R. D. Logie, Osaka Gakuin University, for his careful
proofreading.

REFERENCES

［１］A. Schneider, T. Bluhm, T. Renner, U. Heinkel, J.
Knablein, and R. Zavala, “Formal verification of
abstract system and protocol specifications,” 2012
35th Annual IEEE Software Engineering
Workshop, vol. 0, pp. 207‒211, 2006.

［２］M. H. ter Beek, M. Massink, D. Latella, S. Gnesi,
A. Forghieri, and M. Sebastianis, “A case study
on the automated verification of groupware
protocols,” in 27th International Conference on
Software Engineering（ICSE 2005）, 15-21 May
2005, St. Louis, Missouri, USA, G.-C. Roman, W. G.
Griswold, and B. Nuseibeh, Eds. ACM, 2005, pp.
596‒603.

［３］R. I. Siminiceanu and G. Ciardo, Symbolic Model
Checking for Avionics. John Wiley & Sons, Inc.,
2012, pp. 85‒112.

［４］E. M. Clarke, O. Grumberg, and D. Peled, Model
Checking. MIT Press, 1999.

［５］E. A. Emerson, “Temporal and modal logic,” in
Handbook of Theoretical Computer Science.
Elsevier, 1990, vol. B, ch. 16, pp. 995‒1072.

techniques to ensure the quality of software products,
it is necessary to consider the construction of models
and the description of properties. There have been a
number of studies on the conversion of specification
into formal models. For example, the verification of
realtime control programs[12] describes the construction
of a t imed automaton model using automatic
translation from the control program to properties.
The automatic conversion from a specification
language, such as SysML and UML, into formal models
used in model checking is described in[13]. A survey of
model checking of robotics control systems[14] is of
interest because the authors summarize various
techniques for veri f icat ion and also describe
verification results for safety and liveness properties.
The process of technology transfer from the academic
domain into industrial practice is described well in[15].

Ⅵ. CONCLUSION

　We have studied verification techniques to ensure
the reliability of specifications for an embedded
system which is an in-house development product of
Mitsubishi Space Software Co., Ltd. One of the
purposes o f th i s s tudy was invest igat ion o f
applicability of formal methods. To this end, we took
two approaches, the conversion from specification into
formal models for model checking or satisfiability
checking, and the generation of combinations of
parameters using the pairwise testing method. We
f i r s t se t convers i on ru les wh ich t rans l a ted
specifications into formal models. Then we constructed
models of the target system by applying the
conversion rules and verified them using a model
checker, SPIN, or an SMT solver, Yices. Results led to
us f inding def ic iencies in the descript ions of
parameters in specifications. We have also described
an approach to the generation of evaluation items
using pairwise testing. This approach enables
additional verifications and contributes to improving
the reliability of specifications. These results strongly
convince us of value of formal methods.
　We believe that certain of these results are a
positive indication of the applicability of formal
methods but this study has highl ighted some
problems. One of our future work areas includes the
implementation of our approach. So far we have used

9 MSS技報・Vol.25

IEEE Computer Society, 2000, pp. 147‒155.
［13］L. Alawneh, M. Debbabi, Y. Jarraya, A. Soeanu,

and F. Hassaïne, “A unif ied approach for
verification and validation of systems and
s o f tware eng inee r i ng mode l s ,” i n 13th
Engineering of Computer Based Systems. IEEE
Computer Society, 2006, pp. 409‒418.

［14］N. Sharygina, J. C. Browne, F. Xie, R. P. Kurshan,
and V. Levin, “Lessons learned from model
checking a NASA robot controller,” Formal
Methods in System Design, vol. 25, no. 2-3, pp.
241‒270, 2004.

［15］R. P. Kurshan, “Verification technology transfer,”
in 25 Years of Model Checking, ser. Lecture
Notes in Computer Science, O. Grumberg and H.
Veith, Eds., vol. 5000. Springer, 2008, pp. 46‒64.

［６］G. J. Holzmann, The Spin Model Checker.
Addison-Wesley.

［７］“The Yices SMT Solver,” http://yices.csl.sri.com/.
［８］A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu,

“Symbolic model checking without BDDs,” pp.
193‒207.

［９］“CIT-BACH Website,” http://www-ise4.ist.osaka-u.
ac.jp/?t-tutiya/CIT/.

［10］R. Alur and D. L. Dill , “A theory of timed
automata,” Theoretical Computer Science, vol.
126, no. 2, pp. 183‒235, 1994.

［11］J. Lunze and F. Lamnabhi-lagarrigue, Handbook
of Hybrid Systems Control - Theory, Tools,
Applications. Cambridge University Press, 2009.

［12］T. K. Iversen, K. J. Kristoffersen, K. G. Larsen, M.
Laursen, R. G. Madsen, S. K. Mortensen, P.
Pettersson, and C. B. Thomasen, “Modelchecking
real-time control programs: verifying lego（R）
mindstormsTM systems using UPPAAL,” in 12th
Euromicro Conference on Real-Time Systems.

※ The IEEE owns copyright of this document. Nobody can copy, alter, distribute and use this document by any
　other way without permission of the IEEE.

