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Ⅰ. INTRODUCTION

　Embedded systems have become important in our 
soc iety .Sof tware has come to contro l a lmost 
everything from safety critical systems to home 
appliances. Consequently, verifying the properties of 
embedded systems has become increas ing ly 
important. Formal methods are mathematical based 
techniques for verification and development. Formal 
methods are widely used in order to ensure properties. 
Several successful applications have been reported, 
these include verification of protocol specifications[1], 
internal groupware systems[2], and avionics runway 
safety monitoring[3]. The appearance of such formal 
and semi-formal methods has led to the introduction of 
international standards such as ISO/IEC 61508 and 
RTCA（Radio Technical Commission for Aeronautics） 
DO-178C. Therefore, it is crucial to accommodate these 

standards by introducing formal methods to the 
product development process.
　Model checking[4] is one formal method which has 
been successfully applied in the verification of many 
systems. A model of the system is verified by 
exhaustively searching its state space to ensure that 
properties are satisfied. In this approach models may 
be represented by a transition system, such as a 
Kripke structure, and properties are described by 
using a logic such as Linear Temporal Logic（LTL） or 
Computation Tree Logic（CTL）[5].
　This study reports on the application of formal 
methods in the development of an embedded control 
system by Mitsubishi Space Software Co., Ltd.（MSS）. 
Note that the application of model checking in the 
product development process is still in its early stages. 
This study, therefore, includes investigation into the 
applicability of formal methods, model checking in 
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Ⅱ. SYSTEM AND SPECIFICATIONS

　The Behavior of the target systems in this study are 
defined by the following specifications.
1）Functional specifications of a control system
2）Combination table of signals of state flow
　The Functional specifications describe the core 
parts of inhouse embedded products at MSS’s development 
site. Various projects use this specification either as a 
foundation, or to add feature expansions. Ensuring the 
properties of this core specification is crucial. Note 
that, this specification has been reviewed, but 
additional reliability checking has been requested.
　Functional specifications define signals（variables）, 
processes and transition conditions for every system 
state. There are fifteen boolean signals 1, 2, . . . , 15 
which include both normal signals and error signals. 
Each signal represents a sensor state in the target 
system. The target system also has seven system 
states, 1, . . . , 7, depending on values of the signals. 
Each system state represents a mode, such as initial 
condition diagnostics. As might be expected, transition 
condit ions are a lso def ined in the funct ional 
specification.　Table I shows a part of these transition 
conditions. There are 16 transition conditions for 
system states. The table lists the current state, the 
condition number, the transition conditions, and 
transition destination for each entry. For example, the 
first row states that if the current state is 1 and if transition 
condition #S1-1 holds, i.e.,（ 1=ON） ∧（ 5=OFF） holds, 
then the system makes a transition to state 2.
　The functional specification also describes the whole 
system which consists of the following four processes, 

1, . . . , 4.
1） 1 represents the main controller,
2） 2 simulates human manipulations,

particular, to the development process. To do this we 
chose an in-house developed embedded system which 
had its main functions defined by two specification 
methods, a functional specification and a combination 
table of signals. The following three approaches were 
applied.
1）Reachability checking using model checking,
2）Satisfiability checking using an SMT（Satisfiability 

Modulo Theories） solver, and
3）Generation of combinations of variables for 

verification using pairwise testing methods.
In approach 1, a state transition system is constructed 
from functional specifications and formulas for 
reachability are extracted from the combination table. 
These are then verified using model checking. 
Approach 2 is a kind of bounded model checking 
where satisfiability checking is only applied to 
properties associated with no transitions. Approach 3 
differs from the above in that it verifies properties 
generated from a manually produced combination 
table. Because of the limited number of combinations 
that can be produced manually we adopt pairwise 
testing to generate combination of variables.
　Through experiments , we have found some 
shortcomings in the descriptions of specifications 
which have passed the rev iew process . The 
contributions of this study are; i） to show the 
translation of product specifications into formal 
models, ii） to show the verification results of an 
industry case study, and iii） to describe the generation 
of sets of verification parameters by applying pairwise 
testing. Note that the names of systems and variables 
have been generalized so as to protect trade secrets.
　The layout of this paper is as follows. In Section Ⅱ, 
we describe the system and specifications. Then we 
present our approach for applying model checking to 
investigate correctness of the target system and 
specif ications in SectionⅢ. SectionⅣ presents 
verif ication results , and SectionⅤ offers some 
discussion of these results. SectionⅥ provides a 
concluding summary and outlines our future work.

TABLE Ⅰ　TRANSITION CONDITIONS OF THE SYSTEM
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or not the conditions for state transitions hold. If a 
transition condition is satisfied for the current state 
then 1 makes a transition to another system state.
　Before describing specification 2, let an evaluation item

（EI）be a combination of the values of fifteen signals 
1, . . . , 15, and let an evaluation table（ET） be a list of 

EIs. Specification 2 provides an ET which contains 35 
EIs. These EIs are extracted from review results by 
hand . These may be descr ibed as necessary 
combinations of signals for ensuring the reliability of 

1. Note that the ET is used to generate test cases for 
the testing phase of this product.
　Table II shows part of an ET which contains 35 EIs. 
The three header rows show the process number, 
signal names, and a signal classification, i.e. , normal 
signal（N） or error signal（E）. Each of the data rows 
corresponds to an EI which lists the item number, 
constraints on signals, the current state, and the 
expected transition. Signal constraint cells may either 
have a value or be blank. If the cell has a constraint 
value then the signal must take that value. If the cell 
is blank then the signal may, non deterministically, 
take any value in its range. The“state”column 
identifies the current system state as defined in 
specification 1. Lastly, the transition column lists the 
expected property which will either be a transition 
from state i to state j, listed as “ i→ j”, or no 
transition, listed as“Status Quo”, which means that 
the controller stays in its current state.For example, 
entry No.1 indicates that for 2 normal signal 1=ON 

3） 3 is an external environment, and
4） 4 is an external environment different from 3.
These four processes run in parallel and all except 2 
are continuous. Process 1 is the main controller 
which handles the system state according to the 
behaviors defined by transition conditions in Table I. 
This main control process is the verification target. 
Process 2 simulates human manipulations and handles 
only one global signal 1 which represents the main 
system switch. Note that the main switch does not 
interrupt the power supply and all processes will 
continue to run if the main switch is turned off. 
Process 3 represents an external environment. It 
detects and aggregates changes in sensor values then 
makes them available to 1. Process 4 is also an 
external environment and is similar to 3.
　Here, we describe data flow between processes. 
Process 2 controls a global switch 1 which affects 
the condition of the system. For example, signal 2 
never becomes ON if 1 is OFF, but 2 becomes ON if 

1 = ON and some other conditions hold. However, 
hardware sensors may be activated by conditions 
outside of the specification, even if 1 is OFF. This is 
because we are handling the core part of the 
embedded system, and the sensors are affected by 
external conditions. Processes 3 and 4 detect 
changes in the sensors, and asynchronously send the 
sensor values to 1. The main controller 1 periodically 
polls and collects these sensor values. According to the 
combination of the sensor values, 1 judges whether 

TABLE Ⅱ　EVALUATION TABLE
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model. For example, condition No.#S1-1 is converted into 
Promela model as shown in Fig. 2. Note that, 1 is the 
verification target and is shared in all verifications. 
Therefore, this conversion is used only once. 
　Next, we describe the conversion rules from an EI 
to Promela. Conversions are done automatically 
according to conversion rules. Process 2 only handles 
one global variable. This process can be modeled in a 
straightforward manner as shown in Fig. 3. 
　Processes 3 and 4 have essentially the same 
behaviors. The reason for division into two processes 
is based on the design of the target system, and is 
outside the scope of this study. Both processes are 
non-stop processes which continuously send signals to 

1. Therefore, the whole process is expressed as an 
infinite loop. One execution of the do loop corresponds 
to the sending of a set of signals.  Values of signals 
depend on the values of the elements in the EI. If a 
value of signal is defined with a constraint, then the 
signal is expressed deterministically. Otherwise, if no 
constraints are defined then the value of signal is 
handled by non-deterministic choice. The Promela 
code shown in Fig. 4 expresses the conversion rules. 
Note that if there are no deterministic signals then 
conversion for the signals are skipped.
　In addition, we need at least one property for 
verification. A property is extracted from the cells in 
the EI which describe the target state and expected 
property. If an expected property is written as “ i→ j” 
in a cell of the ET, it means “from the state i, 
eventually reaches to j”. This reachability property 
is translated into an LTL formula □（state== i→◇

（state== j））, where state is a variable in Promela 
representing a system state.
　2）Satisfiability Checking: If the transition cell for an EI 

and for 4 error signal 5=OFF. All other signals have 
non-deterministic settings, either ON or OFF. Then if 
the current system state is 1, the target process 1 
is expected to make a transition into state 2.

Ⅲ. OUR APPROACH

　Our approach consists of two parts; verifying 
properties defined by an ET, and generating EIs using 
a pairwise testing method, Fig. 1 illustrates this 
approach and it is described in detail below.
A. Verification　of　Properties
　Verification is carried out by using the SPIN[6] model 
checker and satisfiability checking uses the Yices[7] 
SMT solver. These procedures are detailed here.
1）　Model Checking: To verify reachability properties,
which are expressed as “ i→ j” in an EI, we use the 
SPIN model checker. SPIN takes a model written in a 
specification language, Promela, and properties 
described in LTL. There are a number of EIs in the 
ET but because some of them conflict with others we 
verify the EIs one by one. 
　The Promela input model for SPIN consists of 
variable declarations, four processes, and some inline 
functions. The model is constructed from the 
specification in a straightforward manner. In this 
study, we draw up conversion rules from specifications 
to Promela for future automated verification. Our 
conversion rules mainly consists of two parts, a 
conversion rule for generating 1 from transition 
conditions, and conversion rules for generating other 
processes from an EI.
　First , we describe the conversion rule from 
specification 1. As shown in Table I, transition 
conditions for the system are expressed in predicate 
logic where signals are atomic propositions. Therefore, 
it is easy to convert from the formula to a Promela 

Fig. 1　Our Approaches

Fig. 2　Example of Conversion of Transition Conditions

Fig. 3　Conversion Rule for Process 2
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method of generating test cases from a pair of 
parameters. EIs are thus generated using pairwise 
testing a properties are verified by model checking 
the generated EIs. Because pairwise testing only 
generates pairs of parameters it is then necessary to 
associate a property with each EI. We use CIT-BACH

（combinatorial interaction testing tool with a BDD-
assisted constraint handler）[9] as a pairwise test case 
generator. One feature of CIT-BACH is that it allows 
constraints to be applied to parameters. If one gives 
constraints on input parameters then generated pairs 
of parameters will satisfy these constraints.
　Now we consider the construction of a model using 
the results from CIT-BACH. We can construct an 
input model for SPIN based on specification 1 and 
pairs of signals considered as constraints in an EI. 
However, CIT-BACH only generates pairs of signals 
and there is no property. To solve this problem, we 
focus on the two classifications of system states, 
normal states and error states. That is, system states 

5, 6 and 7 are assigned to error states. According 
to the specification, if at least one error signal is ON 
the system must transit to one of its error states. This 
may be an indirect transition, for example, 1 cannot 
directly reach one of the error states and must 
indirect via some other state. This specification can be 
applied to set a property. Specifically, We set at least 
one error signal to ON in the pairwise testing input 
parameters, and set the property for reachability 
checking to state 5, 6, or 7.
　In this study, the approach described above is 
carried out by hand. However, this approach can be 
automated. It allows us to carry out verifications while 
computation environments have idle time. We believe 
that such additional verification will contribute to 
improve reliability.

Ⅳ. VERIFICATION RESULTS

　In this section, we present results of verifications 
and satisfiabil ity checking. We implemented a 
prototype tool for generating input files from ET 
based on the conversion rules described in Sec. III. 
Note that the prototype tool only generates input files 
for SPIN leaving the input files for Yices to be 
constructed by hand. However, input files for Yices 
are not complicated, and there is no difficulty.

has “Status Quo” as its expected value then there is 
no state transition. In this section, we describe our 
approach to EI including “Status Quo”. For this 
expected property , i t i s poss ib le to wr i te a 
corresponding LTL formula, but verification using 
SPIN is hard because of the state explosion problem 
caused by the number of signals. As described above, 
transition conditions in 1 can be expressed as a 
formula in predicate logic. Constraints on signals in an 
EI can also be expressed as a formula. Therefore, it is 
possible to check whether or not the transition 
condition is met by satisfiability checking.
　Specifically, we first obtain the transition condition  
associated with systems state i and the constraints 
χ defined by the appropriate EI. Then we check the 
sat i s f i ab i l i ty o f  wi th constra intsχ. I f  i s 
unsatisfiable, there will be no combination of signals 
which makes a transition from state i . Otherwise, if 
the result is satisfiable, there will be at least one 
combination of signals, and the expected property 
does not ho ld . In th is case , Yices shows the 
combination of signals which satisfies the checked 
formula and this provides a counter example.
　This approach is a kind of bounded model checking[8] 
in which the boundary is limited to the current state. 
Note that an SAT solver is sufficient for checking the 
properties handled in this study, because all signals 
are two-valued. However, enhanced versions of 
specifications will include real values and functions on 
a range of signals. Therefore, we adopt an SMT solver 
for future extensions.
B. Generation of Evaluation Items
　Manual generation of EIs limits the number of 
properties that can be checked. Therefore, it is 
necessary to have automatic generation of EIs. We 
adopt pairwise testing which is a combinatorial 

Fig. 4　Conversion Rules for Evaluation Item
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investigated. The expected result was unsatisfiable, 
but the solver indicated that it was satisfiable. Yices 
returns a combination of variables for satisfiable 
transition conditions and this was analyzed to identify 
the problem. This led to the identi f icat ion of 
inconsistencies in variables and the conclusion that 
conditions for EI No.31 were not sufficient. As with the 
cases of EIs of No.21 and No.22, the results were 
checked by engineers. It transpired that, EI No.31 was 
intentionally inserted into the ET by engineers in 
order to investigate power of formal methods. According 
to the engineers, EI No.31 simulates a situation in 
which a variable is misread and a constraint is 
incorrectly described. EI No.31 does not exist in the 
real specification and the authors had not be notified 
of the addition of this test item. Even though EI No.31 
is an experimental item, we believe that detection of 
its inconsistency shows the applicability of satisfiability 
checking.
　Finally, we describe our trial verification results for 
generating EIs using CIT-BACH. To confirm validity, 
we generated a set of EIs using CIT-BACH according 
to the approach described in Section III. In applying 
the approach, it is required to determine which error 
signal is set. Here, we set error signal 5 to be true as 
a constraint. Normal signal 1 is also set to be true, 
because if this signal is false then many other signals 
are affected. We constructed an input file for CIT-
BACH which described these constraints. CIT-BACH 
then generated nine EIs for two constraints and 
thirteen signals not specified. In addition, it is required 
to determine the target system state and at least one 
property for verification. Here, the target state is set 
to 3, and a property is expressed as reachability to 
one of the system error states. The reachability 
property is □（targetstate→ ◇errorstates）, where 
targetstate is state= 3 and errorstates is state= 5 ∨ 
state= 6 ∨state= 7. The reason that errorstates consists 
of three system states is because an error state cannot 
be absolutely specified for the constraints. The 
generated EIs were then converted into Promela 
models using our prototype conversion tool, and 
verified using SPIN. The results were as expected and 
no inconsistencies were found. Note that, all signal 
values were fixed in the setting described above. It is, 
of course, possible to set some of of the signals to be 

　All 35 EIs listed in specification 2 are verified, 25 EIs 
are verified using SPIN and 10 EIs are checked using 
Yices. Results indicated that three EIs, No.21, No.22, 
and No.31, are not sufficient to satisfy transition 
conditions. Two of these, No.21 and No.22, were 
identified by model checking, and the third by 
satisfiability checking. The verification results were 
unexpected, because specifications are reviewed and 
all properties are expected to hold.
　In response to the ver i f icat ion results , we 
investigated the reasons for the failures. First, we 
checked the conversion rules. Particular attention was 
given to the examination of 1 and its associated 
conversion rules. This is because 1 is generated only 
once and shared by all verifications, i.e., if 1 has error, 
verification results make no sense. As a result of 
examination, we conclude that the 1 accurately 
reflected its specification. Hereafter, assume that 1 is 
correct.
　Next we investigated transition conditions for EIs 
No.21 and 22. For No.21, the expected property is 
reachability, □（（state= 4）→◇（state= 6））. On 
analyzing the counter example it was found that a 
necessary constraint was missing. The authors handle 
verification from the viewpoint of quality assurance 
without the perspective of engineers working on 
system development. Engineers in charge of the 
product were asked to review these verification 
results. It was confirmed that there were missing 
constraints. In more concrete terms, signal 13 is 
defined as a non-deterministic variable in EI No.21, but 
σ13 must be fixed to false. After the problem was 
solved, we set the signal to be false, and verified the 
property again. This verification confirmed that the 
property satisfactory holds. The problem with No.22 
was similar to that of No.21, i.e., a missing constraint. 
This was also confirmed after appropriate constraints 
were set. Note that the prototype conversion tool is 
used again for these re-verifications. In addition, we 
examine the effects of these problems because EIs are 
used as a foundation for constructing test cases for 
this product. These missing constraints are handled as 
implicit knowledge in the test phase, and errors are 
avoided. Obviously, such occurrences decrease 
reliability in software development.
　The prob l em found in EI No .31 was then 
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rules are applied to generate formal models. We 
believe that this approach enables automation. Counter 
examples are, however, analyzed by hand and this is 
not an ideal situation for the application of formal 
methods. This is because counter examples do not 
necessarily present the shortest path and the manual 
analysis of counter examples is requires skill and is 
costly. Therefore, computer aided counter example 
analysis will be required. Another problem is the state 
explosion problem. This is widely considered as a 
major problem in model checking. We constructed models 
from specifications in a straightforward manner. This 
approach improves the readability of models, but 
causes state explosion problems. The size of state 
space for this study was within SPIN’s capabilities 
but it was close to the state space size limit. If we 
apply our approach to the enhanced versions of the 
product specification then the state space explosion 
will potentially cause problems. Abstraction seems to 
be a promising technique for reducing the size of the 
state space. Data mapping and predicate abstraction 
seem to be especially, efficient in this regard.
　Now we consider function enhancement. Specifications 
were converted into Promela models for conventional 
model checking. This approach was sufficient for the 
specifications handled in this study, because all signals 
are two-valued. However, these specifications are a 
core part of our product and in the enhanced version 
signals are not limited to twovalue ranges. Additionally, 
various types of properties are expected to be verified. 
For example, one important behavior aspect of 
embedded system is time-related properties. Several 
models have been proposed to deal with such real-time 
systems. One such model is the timed automaton[10] 
which is being considered as a candidate if we extend 
our approach to verify time-related properties. 
Another possibility is the verification of hybrid 
systems[11] in which continuous and discrete dynamics 
are mixed with time progression. Embedded systems 
sometimes control continuous systems. Therefore, 
hybrid systems also seem to promise models which 
reflect this target architecture more closely.
B. Related Work
　Here we br ie f ly descr ibe re la ted work on 
conversion, verification of applications in control 
engineering. When one considers applying formal 

non-deterministic values.
　Verifications were performed using SPIN 6.2.2, Yices 
1.0.38, and CIT-BACH 1.01 on Windows 7 64bit, 
running on an Intel Core i5-2400 3.10GHz, with 8GB 
memory. According to the verification log of SPIN, the 
number of system states stored is approximately 3×
107 and the time for a verification when properties 
hold is about 450 seconds. It is easy to understand 
how Yices returns the result in about one second, 
because unused variables are omitted.

Ⅴ. DISCUSSION

　Here, we discuss our experiments and consider 
related work in the field of control engineering and 
embedded systems.
A. Discussions on the Experiments
　In this sect ion , we discuss our veri f icat ion 
experiments and consider effectiveness of our 
approaches to development processes.
　First, we consider the missing but necessary signal 
values in EIs. As mentioned, the evaluation table had 
been reviewed entirely save for the intentionally 
inserted experimental EI. Even if these omissions are 
avoided by implicit knowledge, their detection during 
the design phase is valuable for product development 
because EIs are the basis for test cases. The detection 
of an intentionally inserted EI also shows possibility of 
formal methods.
　We have not found any inconsistencies in the 
verification of EIs generated using CIT-BACH. Even 
so, these generated EIs specify new combinations of 
signals allowing us to verify additional items that were 
not extracted from the review process. These results 
indicate both the applicability and the effectiveness of 
our approach. Recall that one of the purposes of this 
study was an investigation of the applicability of 
formal methods. It is widely said that formal methods 
have the power to reduce problems in the earlier 
stage of development. Our results confirm that formal 
methods are useful and that this saying expresses a 
valid point of view.
　Though the verification results are positive we 
believe that there are still some problems to overcome 
and one of these is automation. Automation is an 
important consideration for applying formal methods 
to product development. In this study, conversion 
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a prototype conversion tool to construct input files for 
verification and satisfiability checking. The tool only 
converts a part of the input files, leaving some details 
to be processed manually. All conversions were, 
however, done by rote. This indicates that conversion 
from the evaluation table can be fully automated. 
These results lead us to believe that pragmatic 
expansion to the development site and into products 
will produce the desired effects. Another future task is 
introducing formal specification language such as B, Z, 
and VDM. In this study, we had to convert the main 
controller by hand because the specification was 
wri t ten in natura l language . Obvious ly , th is 
specification method leads to difficulties in automatic 
verification using formal methods.
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